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Water scarcity afflicts societies worldwide. Anticipating water short-
ages is vital because of water’s indispensable role in social-ecological
systems. But the challenge is daunting due to heterogeneity, feed-
backs, and water’s spatial-temporal sequencing throughout such sys-
tems. Regional system models with sufficient detail can help address
this challenge. In our study, a detailed coupled human–natural sys-
tem model of one such region identifies how climate change and
socioeconomic growth will alter the availability and use of water
in coming decades. Results demonstrate how water scarcity varies
greatly across small distances and brief time periods, even in basins
where water may be relatively abundant overall. Some of these
results were unexpected and may appear counterintuitive to some
observers. Key determinants of water scarcity are found to be the
cost of transporting and storing water, society’s institutions that
circumscribe human choices, and the opportunity cost of water when
alternative uses compete.

water scarcity | climate change | coupled human–natural system |
hydro-economic model | conveyance cost

Declining access to water is a significant problem for up to
2 billion people, impairing food production, human health,

economic development, and ecosystem services (1). Water scarcity
can result in crop failures, wildfire, fish die-offs, urban water
shutoffs, and groundwater depletion leading to irreversible land
subsidence (2). Contributing factors include growing populations,
incomes, and a changing climate. Recent droughts in the western
United States have resulted in substantial losses to agriculture and
other sectors, and damages to forests, fish, and wildlife (3, 4).
Water is an integral part of social-ecological systems. Pre-

dicting water scarcity and designing mitigation and adaption
policies can be extremely challenging because these systems are
complex and are characterized by nonlinear feedbacks, strategic
interactions, and social, spatial, and temporal heterogeneity (5).
Previous studies have investigated water scarcity at regional or

national scales using aggregate measures of water abundance rela-
tive to overall demand (6, 7). Supply has typically been measured as
annual basin discharge, and demand projections have reflected av-
erage per capita water use (7, 8). Given the complex role water plays
in human–natural systems, such aggregate approaches may not be
able to anticipate when and where water scarcity may emerge, making
it difficult for policymakers to address rising water scarcity.
This study examines how climate change, population growth,

and economic growth will alter the availability and use of water
in coming decades, using the example of the Willamette River
Basin (WRB), Oregon. The model developed for this purpose
has high spatial and temporal resolution, and detailed repre-
sentations of economic and biophysical subsystems (see SI Ap-
pendix for details). Models of coupled human–natural systems
take many forms (5, 9). Where markets and incentives partly

drive allocation and use of land, water and other resources
have been integrated in human process and biophysical models
in a simulation or optimization framework (e.g., refs. 10 and 11)
including climate-economy models (12). The main components
and linkages of this model are characterized in Fig. 1, indicating
how human uses of land and water interact with flows of surface
and groundwater, mediated by water rights, markets, and regu-
lations. The goals of the study are twofold: first, to understand
where and when water scarcity may arise and to recognize the
factors contributing to, and potentially mitigating, future water
scarcity; and second, to assess the importance of a high level of
system detail to gain insights into emerging water scarcity.
The results are illuminating in two main ways. First, the model

reveals unexpected changes in water availability and use arising
from interactions between human and natural subsystems. In some
cases, feedbacks or indirect effects in one component of the model
offset expected direct scarcity impacts. Second, the model dem-
onstrates that water scarcity, defined as the marginal value of a
unit of water (13), varies significantly across small distances (me-
ters) and brief time periods (days), even in our study basin, where
water is relatively abundant overall. There are three key contrib-
utors to water scarcity: (i) the costs of transporting water across
locations, storing water over time, and transforming the quality
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of water (e.g., temperature, salinity); (ii) the effectiveness of in-
stitutions in allocating water, including property rights, regulations,
and other governance mechanisms that impact water use (14); and
(iii) the opportunity cost of water, when one use for water com-
petes with other, possibly more valuable, uses. These economic and
institutional factors are key to explaining how scarcity can coexist
with overall abundance.

Modeling the WRB, Oregon
The WRB faces water scarcity due to declining snowpack, pop-
ulation growth, rising demands from agriculture, and the effects of
warmer air temperatures on forest health, wildfires, river tem-
peratures, and endangered fish. The WRB covers 29,728 km2,
∼12% of Oregon’s land area. The Willamette River—a major
tributary of the Columbia River—is the 19th largest river in the
United States. Its mainstem is 301 km long, flowing north between
the Oregon Coast and Cascade Ranges. The WRB is home to
over 70% of the state’s population of nearly 4 million. Two-thirds

of the basin’s population is concentrated in the Portland Metro
area (Fig. 2A).
The basin’s hydrology is notable for the mismatch between

winter inflows and summer demand. The valley is prone to
flooding from November to March due to precipitation on sat-
urated soils, atmospheric rivers, and snowmelt (15), whereas
streamflows are lowest during the dry summer farming season.
The Willamette Valley is one of the most fertile agricultural

regions in North America, with about 1.5 million acres of farmland,
30% of which has irrigation water rights. Human uses of water are
governed under western US water law by a seniority system, en-
vironmental regulations, and public infrastructure, including 13
federal dams constructed for flood mitigation but also providing
hydropower, storage, and recreation. In addition, large instream
flows are protected for navigation, pollution abatement, recreation,
and aquatic habitat.

The Model. We developed a hydroeconomic process model of the
basin’s major human and natural systems with high spatial reso-
lution (160,000 polygons averaging 18.6 ha in size) and daily to
annual timescales from 2010 to 2100 (Fig. 1). Exogenous elements
include daily meteorology (temperature, precipitation, humidity,
wind, radiation) for three representative climate change scenarios
derived from regional climate data downscaled to 4-km resolution
(16–18), and annual population and income projections.
Annually modeled processes include spatially explicit forest

growth, harvest and wildfires (19), endogenous land values and
land-use changes (predicted using empirically based functions
adapted from refs. 20 and 21, respectively), endogenous regulatory
adjustments to urban growth boundaries (similar to ref. 20), water
rights, crop choices, and irrigation decisions (22). Daily modeled
processes include spatially referenced routing of surface hydrology
based on algorithms developed by Bergström and others (23, 24).
Snow accumulation and ablation uses a modified version of the
Hydrologiska Byråns Vattenbalansavdelning (HBV) degree-day
model of Seibert (25). Evapotranspiration of forests (described in

Fig. 1. Diagram of WRB model components and linkages.

Fig. 2. Projected changes in the WRB 2010–2100: developed land use and April 1 average snowpack (snow–water equivalent, SWE) (A); projected seasonal
average snow accumulation and melt in future decades (B); and projected changes in levels and timing of irrigation diversions (C).
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ref. 26) adapted the Penman–Monteith approach. Spatially explicit
irrigation and municipal water rights were fully represented. Crop
planting, growth, and daily evapotranspiration were modeled fol-
lowing FAO-56 (27, 28) and similar to Seibert (29). Additionally,
soil moisture, groundwater flows, economic models of farm irri-
gation decisions and urban water use, as well as the releases from
13 federal dams, were developed for this study. See SI Appendix for
detailed descriptions.
These submodels are linked using Willamette Envision, an in-

tegrated modeling framework that simulates spatially and tem-
porally explicit human and natural system processes, as described
in SI Appendix. The reference case and alternative scenarios were
developed working closely with a broad stakeholder community.

Reference Case Scenario. The central simulation is a “reference
case” scenario that reflects midrange projections for climate
change and population and income growth, as well as status quo
assumptions for most institutions (water rights, land use regu-
lations, reservoir and forest management), for technology, and
for most prices. Over 20 alternative scenarios were simulated for
sensitivity analysis (e.g., high climate change, high population
growth), counterfactual comparisons to isolate specific changes
(no population growth, stable climate), to evaluate policies to
mitigate future water scarcity (irrigation expansion, high water
prices), or as combinations. See SI Appendix for details.
The reference case scenario finds that annual outflow from the

Willamette River averages 29.6 × 109 m3 [24 × 106 acre-feet (af)],
whereas human withdrawals plus instream regulatory flows aver-
age 5.5 × 109 m3 (4.5 × 106 af). This apparent surplus would ap-
pear to preclude water scarcity. Nevertheless, notable scarcity
emerges when we examine finer spatial and temporal scales.
Based on over 40 climate scenarios, the downscaled general

circulation model (GCM)-derived outputs indicate that by the
year 2100, theWRB will be between 1.1 °C (2 °F) and 7 °C (12.6 °F)
warmer than today (19, 20). Winter temperatures are projected
to rise between 0.5 °C (33 °F) and 5.5 °C (42 °F). The months
of July to September are projected to warm about 2 °C (3.6 °F)
more than in winter. Climate models differ about whether the
WRB will be drier or wetter, but the majority of climate
model runs examined show slightly wetter winters and drier
summers.
Population is projected to increase from 2.6 million to 5.4 million

over the period (SI Appendix, Table S1), expanding developed land
area by 53% (716 km2) and displacing 469 km2 previously in agri-
culture and 235 km2 previously in forest use (Fig. 2A). Urban water

use is projected to rise by 110%, due mainly to population growth.
Real household income is expected to increase by 175% by 2100.
Snowpack, in the midrange climate scenarios, declines between

87% and 94% by 2100 (Fig. 2 A and B), hastening runoff and
reducing spring and summer flows. In subbasins without reservoirs
or with low groundwater contributions, these changes reduce the
water available at lower elevations. In particular, the federal res-
ervoirs fill to lower levels during the summer when reservoir rec-
reation competes with “minimum conservation flows” established
under the US Endangered Species Act (ESA) (30) and other
obligations, including irrigation water rights tied to stored water.

Variations Across Subbasins. Snow provides winter storage and
spring-summer flows for higher elevation eastern subbasins, but
very little for lower elevation western subbasins (Fig. 2A). Even
among eastern subbasins, the impact of snow on streamflow varies
substantially due to differences in elevation and geologic mediation
of low flows by groundwater contributions (15, 31). These differ-
ences are reflected in Table 1 (columns A and B), where the April–
September flux varies by a factor of eight. The adequacy of existing
flows to meet regulatory minimums also varies by subbasin (Table
1, columns C and D). Moreover, April–August flows in some
subbasins decline relative to instream requirements (column E).
Some of the differences affecting water scarcity across sub-

basins are due to changes in urban and agriculture land uses
(columns F–H), differences in forest growth due to harvest and
wildfires, and differences in how land cover changes affect snow
and runoff due to evapotranspiration and snow sublimation. For
example, forest harvest and wildfires can cause large changes in
forest water use (discussed below).

Finding Scarcity Amid Abundance
The Role of Costs. If it were costless to store and transport water,
or to improve its quality, water scarcity could in principle be
eliminated given the overall abundance of water in the WRB
(barring institutional impediments). Our analysis, however, in-
dicates that water scarcity in the WRB varies seasonally and
across locations and uses. Relatively fine-scale processes such as
market adjustments, barriers due to costs and profitability, or
government regulations can have large consequences for scarcity.
Water storage and transportation costs are not uniform across

the WRB. In some cases, these costs are very low, as with gravity-
based conveyance in summer along watercourses below federal
reservoirs. Although built primarily for flood regulation, in
summer the reservoirs normally store 2 × 109 m3 (1.6 × 106 af) of
water, much of which could be released to flow downstream at

Table 1. Differences in hydrology and economics across subbasins

River Basin

Avg. flow
April-Sept,

m3/s
(A)

Flow April-
Sept, mm/d

(B)

Regulatory
min. April-
Sept, m3/s

(C)

Avg. flow/reg.
min., July-Aug.

(D)

Change in April-Aug.
flow 2010–20s to

2080–90s, %
(E)

Farmland ,
% of area

(F)

Surface
irrigation, %

of basin
(G)

Developed
land, % of
land area

(H)

Clackamas 64 2.3 14.7 2.8 −4.1 7.9 0.5 1.7
Long Tom* 8 0.7 0.8 2.1 8.0 29.9 4.3 6.5
Marys* 9 1.0 1.8 1.5 13.5 22.9 2.7 2.9
McKenzie 107 2.7 29.0 2.4 −7.3 2.0 0.4 0.5
Molalla 42 1.6 9.2 2.7 −0.5 39.0 4.8 3.2
North Santiam 128 5.6 36.8 2.3 −3.9 9.9 1.6 0.5
South Santiam 66 2.1 30.2 1.3 −1.4 14.8 2.5 0.6
Tualatin River* 21 1.0 4.4 1.6 17.0 28.4 6.3 18.2
Yamhill River* 18 1.2 0.9 1.7 11.3 54.6 12.1 3.8
Willamette,

Coast & Middle Forks
88 1.5 61.4 0.7 −3.4 3.4 0.4 0.5

Average 55 2 19 1.9 2.9 23.3 3.9 4.2

*Indicates subbasins on the western side of the WRB (Fig. 3).
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negligible cost. Most farmland, however, is not adjacent to water-
courses downstream of federal dams. Farmers invest in new ir-
rigation if it is profitable—if the additional cost of transporting
reservoir-released surface flows to currently unirrigated farm-
land is less than the added revenue from irrigating. For each of
the 405,000 ha (1 × 106 ac) currently without irrigation water
rights, both the added conveyance costs and increased revenue
were estimated (SI Appendix, section 5.4.5). When farmers were
allowed to adopt new irrigation from stored water in an alter-
native scenario, it was found to be profitable on only about
3,240 ha (8,000 ac) due to the high water conveyance costs. Even
when the costs are assumed to be optimistically low, less than
11,130 ha (28,000 ac) adopt irrigation.
One example of rising water scarcity in the WRB pertains to

forests, where climate change is increasing moisture stress and
threatening forest health (32). As the climate warms, rising air
temperatures increase atmospheric evaporative demand and
forest evapotranspiration (ET). In mid- to late summer, how-
ever, soil water limits ET so that warmer temperatures, when
combined with less snow, lead to a longer summer dry period.
Given the prohibitive cost of transporting water from reservoirs
to forests, the anticipated result is increased water scarcity
resulting in a 200–900% increase in forest wildfires across the
three climate scenarios (26). The likely outcome will be increased
costs for fire suppression, the transition to new forest types, and
reduced availability of forestland for timber harvest (26) (SI
Appendix, section 4.2).

The Role of Water Rights and Other Institutions. Water rights and
other federal, state, and local regulations play a critical role in
determining where, when, and for what uses water may be scarce
(14). Surface water “live flow” rights were fully appropriated in the
WRB by the 1990s, meaning that farms without these rights have
no access to surface water for irrigation. Under western US water
law, the amounts, timing, and uses of water rights are limited, and
yearly fluctuations in supply lead to allocations based on a se-
niority system that can “shutoff” deliveries for relatively junior
water rights (33). Indeed, the scarcity created by irrigation water
rights is one key factor that produces a 10-fold variation in agri-
cultural land values in the basin (Fig. 3 and SI Appendix, Fig. S3).
Instream flows, however, represent by far the largest societal

allocation of water in the WRB. State and federal laws protect
instream flows for navigation, pollution abatement, recreation,
and aquatic habitat. Perennial minimum streamflows were estab-
lished in the 1960s, although a fraction of these have yet to be
implemented as instream water rights (33). Indeed, when the
remaining (“unconverted”) perennial minimum streamflows are
implemented, they will add 1.35 × 109 m3 to minimum outflows
from the 11 major tributaries that join the mainstem Willamette
River (based on model results).
Federal laws also have a substantial influence on water allo-

cation in the WRB. Minimum flows are mandated under the
ESA, in turn prompting targeted releases from federal reser-
voirs. These federal laws interact in complex ways with state
law (33). Indeed, current ESA-related requirements for April–
October minimum flows have led regulators to cap stored water
irrigation contracts at 6% of the total stored volume (30) (a
nonbinding limit in our model).

Differentiation Across Space, Time, and Use.Analyses at the basin or
national scale, such as global assessments of the impacts of cli-
mate change and population growth on future water shortages
(8, 34–37), will be unable to detect these kinds of causal relation-
ships that produce localized scarcity. For example, the 2 × 109 m3 of
water stored each summer would appear to be an ample source for
the 405,000 ha of currently nonirrigable farmland (indeed this water
is currently “reserved” for agriculture under federal law), but the
cost of conveyance makes this economically prohibitive. Within the

basin, the scarcity contrasts are stark. In some areas, farmers have
abandoned water rights or use them intermittently, suggesting low
marginal value of water. In the Pudding River basin, by contrast,
conflict has emerged over a proposed $60 million reservoir that
would permanently flood some farmland to ensure irrigation water
for other farmers. The conflict is emblematic of the complex ways
that economics and institutions interact: Increased instream flows
for three endangered fish, combined with declining groundwater,
have led one group of irrigators on high-value land with low-priority
irrigation water rights to enlist an extraordinary legal tool (eminent
domain) to gain approval for a storage reservoir that will inundate
other, relatively low-value farmland (38).
That scarcity can exist amid aggregate abundance is not unique

to water. Indeed, in the case of food, for example, Sen (39) showed
that major famines were not generally the result of an aggregate
shortage of food. Sen found large differences among households in
their ability to acquire food, due to differences in economic and
institutional factors including costs, market conditions, rights of
ownership, and exchange. These factors are analogous to the cost,
profitability, water rights, and other institutions identified here in
the case of water in the WRB.

The Challenge of Predicting Future Water Scarcity
The dynamics of water demand and supply in regional systems
have the potential to generate unexpected outcomes, often arising
from the linkages and feedbacks between system components. In
the WRB, expanded urban development will displace agriculture
and forests, but also increase the magnitude of potential flood
damages, which could alter the optimal timing of reservoir refill
(40). A warmer climate melts snowpack earlier, increases wildfires,
affects vegetation and ET; encourages earlier planting and irri-
gation; and possibly changes crop choice. Additionally, instream

Fig. 3. Variation in agricultural land values; subbasin locations.
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minimum flow requirements aimed at protecting ecosystem ser-
vices will increase competition with out-of-stream demands (33).
System linkages and feedbacks can be highly idiosyncratic across

subbasins and vary at fine spatial and temporal scales. Without a
model, it would have been extremely difficult to identify and
predict these relationships for the WRB. Three examples illustrate
the challenges that such dynamics represent for predicting water
scarcity and designing policy responses.

Offsetting Seasonal Shifts in Supply and Demand. In the first ex-
ample, climate warming generates two responses, one in water
supply and one in demand. The first response to warmer tem-
peratures is a reduction in snow accumulation and melt, along
with a shift in melt timing to earlier in spring. This response re-
duces summer surface flows. The second response is a human
response. Because of warmer spring temperatures, farmers are
able to plant earlier, which shifts both the start and the completion
of irrigation (Fig. 2C). Thus, a larger proportion of irrigation oc-
curs earlier in the year, when snowmelt runoff and precipitation
are higher. This decreases the projected number of irrigation
shutoffs due to water scarcity by 10–30% in both the reference
case and high climate change scenarios. This is because, although
in future decades surface water supplies become relatively scarce
in late July and August, irrigators have increasingly completed
irrigating by that time, resulting in fewer regulatory shutoffs.
The shift to earlier planting dates has an additional positive

effect on water scarcity: Although warmer midsummer temper-
atures would generally raise crop ET and increase irrigation
requirements, the earlier planting has an offsetting effect. More
of the plant’s growth takes place when temperatures are lower
and precipitation is higher, resulting in no rise in average crop
ET during the 90-y simulation.

Urban Demand Growth and Reduced Irrigation. The second example
involves the potential mitigating effect of urban growth on water
scarcity. Projected growth in urban water demand is the single
largest change in direct human water use through 2100. Many
city governments in the basin face uncertainty about how best to
secure adequate future water supplies. Surface flows are already
fully appropriated, and rights to federally stored water are re-
served for agriculture. Moreover, instream flow requirements
account for a majority of summer water allocations. However, a
city’s growing demand for water will coincide with urban land
expansion, and the likely patterns of this expansion overlap with
some of the spatially referenced irrigation water rights in our
model. For the six main metropolitan areas, the model predicts
urban consumptive use of water (from outdoor use only since
indoor water use is returned to streams with minor losses) to
increase 45 × 106 m3 (Table 2). However, due to the land use
changes accompanying this growth, the displacement of surface
irrigation offsets one-third of the increase. These effects vary
significantly across cities depending on the extent and direction
of urban expansion and on the proximity to surface irrigated
farmlands. When groundwater irrigation is included, more than

80% of the urban water use increases are offset by reduced ir-
rigation in our model (Table 2).

Forest Water Use and Wildfire. The third example involves climate
change and forest water use. With warmer temperatures, water
requirements for a given stand of forest will increase, but drier
forests are also more prone to wildfires. Increases in wildfire
frequency will result in a more open and patchy landscape with
fewer mature trees and, thus, a lower average foliage density (leaf
area) (19). Because forest water use (ET and canopy snow sub-
limation) varies positively with leaf area, more wildfires mean a
reduction in water use. This, in turn, allows more precipitation
falling in forest zones to be routed downstream. This means that
climate change could actually lead to increases in the runoff ratio
despite increasing evaporative demand (26). In our reference case
scenario, there is a projected decrease in forest water use of
315 million m3 for April–July between the 2010s and 2090s due
mainly to the effects of projected wildfires (SI Appendix, section
4.2). Efforts to suppress wildfires can be expected to increase
forest water use. Indeed, a counterfactual scenario that represents
the high climate scenario but with no wildfires finds increased
forest water use by 1.4 billion m3·y−1. While subbasin-specific im-
pacts from wildfire are impossible to predict since the location of
future wildfires is unknown, this example illustrates the possibility
of unexpected results that may appear counterintuitive.

Fine Scale and Large Magnitudes. In addition to these examples of
how feedbacks and linkages can produce unexpected results, we
find a strikingly high variability in water scarcity at fine spatial
and temporal scales. For example, upland forested areas will
exhibit high water stress and increased wildfire risk (SI Appendix,
section 4.2), despite in some cases being close to large federal
reservoirs. Similarly, distances as small as 100 m separate irri-
gators whose legal right to water exceeds what can be put to
beneficial use from farmers who have no economically feasible
options to acquire irrigation water rights, due to protected
instream flows or high conveyance costs that make more distant
options uneconomical.
Another powerful way in which this type of model is valuable is

that it compels us to recognize what is large versus what is small.
Many components related to water supply or demand turn out to be
much larger (or smaller) than initially believed. For example, ini-
tially Willamette Water 2100 researchers and stakeholders focused
on future urban industrial water and did not pay attention to forest
water use, but the former has turned out to be nearly negligible
relative to the latter. Similarly, the anticipated expansion in crop
irrigation in the basin has been a central rationale for reserving the
water stored in federal reservoirs for agriculture. However, we find
that only 1–3% of unirrigated land would be able to bring stored
surface water into use profitably, due to the high transport costs.

Using Regional System Models for Water Policy
Water shortages frequently come with high social costs. The
annual costs of California’s recent experience have been estimated

Table 2. Urban water demand growth net of displaced irrigation, 2010–2100 (1,000 m3)

Change in urban water use

Net of displaced irrigation:

Urban area Surface only Surface and groundwater

Portland 30,872 21,626 7,195
McMinnville 1,457 −819 −1,528
Salem 7,391 4,616 989
Albany 1,510 1,208 393
Corvallis 1,004 486 −155
Eugene 3,158 2,513 618

Total 45,392 29,629 7,512
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at $2–3 billion (41). Whether shortages are the result of short-term
drought conditions, the cumulative impacts of decades of mis-
guided water policies, or long-term shifts in water supply and de-
mand, the costs are high, and hence so too are the potential
benefits from intervening to mitigate future water crises. A system
model can be a critical tool for designing effective policy inter-
ventions. The value of a given model will depend on whether it
sheds new light on critical factors or key processes, and whether
this new information is heeded by policymakers. In the case of the
WRB, the model has allayed some fears (urban water shortages),
while shifting focus toward other, less easily remedied sources of
scarcity (forest health, instream flows, and stream temperatures).
Many of the insights from this model have clear relevance,

applicability, and implications for other basins. For example,
elsewhere in the western United States, emerging water scarcity can

also be expected to exhibit high spatial and temporal specificity,
even while the particular causes and potential solutions may differ.
In California, for example, rather than wildfires reducing water use
by forests, climate change may cause changes in vegetation that
increase forest consumptive use (42). Models of this kind may be
particularly valuable in basins such as the Indus or Nile, where
climate change, population growth, poverty and institutional
failures place large vulnerable populations at high risk.
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